Answer:
A. r = 6 sin theta
Step-by-step explanation:
Given equation is: [tex]x^2+y^2-6y=0[/tex]....(1)
Using the formulae that link Cartesian to Polar coordinates.
[tex]x=r\cos\theta \: and \: y = r\sin\theta[/tex]
Plugging the values of x and y in equation (1), we find:
[tex](r\cos\theta)^2+(r\sin\theta)^2-6(r\sin\theta)=0[/tex]
[tex]\implies r^2\cos^2\theta+r^2\sin^2\theta-6r\sin\theta=0[/tex]
[tex]\implies r^2(\cos^2\theta+\sin^2\theta)=6r\sin\theta[/tex]
[tex]\implies r^2(1)=6r\sin\theta[/tex]
[tex](\because \cos^2\theta+\sin^2\theta=1)[/tex]
[tex]\implies\frac{ r^2}{r}=6\sin\theta[/tex]
[tex]\implies\huge{\purple{ {r}=6\sin\theta}}[/tex]