Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

[tex] \textsf{Let's calculate the surface area of given right prism} [/tex]

[tex] \textbf{Area of Triangles :} [/tex]

  • [tex] \sf{\dfrac{1}{2}\cdot 16\cdot 12} [/tex]

  • [tex] \sf{8×12} [/tex]

  • [tex] \sf96 \: \: cm {}^{2} [/tex]

[tex] \textsf{Since there are two triangles, } [/tex]

[tex] \textsf{Area of Triangles = 96 × 2 = 192 cm²} [/tex]

[tex] \textbf{Now, calculate the Areas of rectangles :} [/tex]

  • [tex] \textsf{Area - 1 = 12 × 10 = 120 cm²} [/tex]

  • [tex] \textsf{Area - 2 = 16 × 10 = 160 cm²} [/tex]

  • [tex] \textsf{Area - 3 = 20 × 10 = 200 cm²} [/tex]

[tex] \textsf{Now add them all :} [/tex]

  • [tex] \textsf{120 + 160 + 200 + 192} [/tex]

  • [tex] \textsf{672 cm²} [/tex]

Answer:

Step-by-step explanation:

(16+12+20)*10+16*12= 48*10+192+480+192=672 c.m. squared