Respuesta :
Answer:
- [tex]\boxed{\sf{3x^3+4x^2-25x-30}}[/tex]
Step-by-step explanation:
[tex]\underline{\text{SOLUTION:}}[/tex]
To isolate the term of x from one side of the equation, you must multiply by a polynomial.
[tex]\underline{\text{GIVEN:}}[/tex]
[tex]:\Longrightarrow: \sf{(x+3)(3x^2 - 5x - 10)}[/tex]
You have to solve with parentheses first.
[tex]:\Longrightarrow \sf{x\cdot \:3x^2+x\left(-5x\right)+x\left(-10\right)+3\cdot \:3x^2+3\left(-5x\right)+3\left(-10\right)}[/tex]
Solve.
[tex]\sf{x*3x=3x^3}[/tex]
x(-5x)=-5x²
[tex]\sf{x(-10)=-10x}[/tex]
3*3x²=9x²
3(-5x)=-15x
3(-10)=-30
Then, rewrite the problem down.
[tex]\sf{3x^3-5x^2-10x+9x^2-15x-30}[/tex]
Combine like terms.
[tex]\Longrightarrow: \sf{3x^3-5x^2+9x^2-10x-15x-30}[/tex]
Add/subtract the numbers from left to right.
-5x²+9x²=4x²
[tex]\Longrightarrow: \sf{3x^3+4x^2-10x-15x-30}[/tex]
Solve.
[tex]\sf{-10x-15x=-25x}[/tex]
Then rewrite the problem.
[tex]\Longrightarrow: \boxed{\sf{3x^3+4x^2-25x-30}}[/tex]
- Therefore, the correct answer is 3x³+4x²-25x-30.
I hope this helps! Let me know if you have any questions.
Answer:
[tex]3x^2 + 4x^2 - 25x - 30[/tex]
Step-by-step explanation:
Step 1: Distribute
[tex](x + 3)(3x^2 - 5x - 10)[/tex]
[tex](x * 3x^2) + (x * (-5x)) + (x * (-10)) + (3 * 3x^2) + (3 * (-5x)) + (3 * (-10))[/tex]
[tex]3x^3 - 5x^2 - 10x + 9x^2 - 15x - 30[/tex]
Step 2: Combine like terms
[tex]3x^3 - 5x^2 + 9x^2 - 15x - 10x - 30[/tex]
[tex](3x^2) + (-5x^2 + 9x^2) + (-15x - 10x) + (-30)[/tex]
[tex]3x^2 + 4x^2 - 25x - 30[/tex]
Answer: [tex]3x^2 + 4x^2 - 25x - 30[/tex]