Respuesta :

Answer:

  • [tex]\boxed{\sf{3x^3+4x^2-25x-30}}[/tex]

Step-by-step explanation:

[tex]\underline{\text{SOLUTION:}}[/tex]

To isolate the term of x from one side of the equation, you must multiply by a polynomial.

[tex]\underline{\text{GIVEN:}}[/tex]

[tex]:\Longrightarrow: \sf{(x+3)(3x^2 - 5x - 10)}[/tex]

You have to solve with parentheses first.

[tex]:\Longrightarrow \sf{x\cdot \:3x^2+x\left(-5x\right)+x\left(-10\right)+3\cdot \:3x^2+3\left(-5x\right)+3\left(-10\right)}[/tex]

Solve.

[tex]\sf{x*3x=3x^3}[/tex]

x(-5x)=-5x²

[tex]\sf{x(-10)=-10x}[/tex]

3*3x²=9x²

3(-5x)=-15x

3(-10)=-30

Then, rewrite the problem down.

[tex]\sf{3x^3-5x^2-10x+9x^2-15x-30}[/tex]

Combine like terms.

[tex]\Longrightarrow: \sf{3x^3-5x^2+9x^2-10x-15x-30}[/tex]

Add/subtract the numbers from left to right.

-5x²+9x²=4x²

[tex]\Longrightarrow: \sf{3x^3+4x^2-10x-15x-30}[/tex]

Solve.

[tex]\sf{-10x-15x=-25x}[/tex]

Then rewrite the problem.

[tex]\Longrightarrow: \boxed{\sf{3x^3+4x^2-25x-30}}[/tex]

  • Therefore, the correct answer is 3x³+4x²-25x-30.

I hope this helps! Let me know if you have any questions.

Answer:

[tex]3x^2 + 4x^2 - 25x - 30[/tex]

Step-by-step explanation:

Step 1:  Distribute

[tex](x + 3)(3x^2 - 5x - 10)[/tex]

[tex](x * 3x^2) + (x * (-5x)) + (x * (-10)) + (3 * 3x^2) + (3 * (-5x)) + (3 * (-10))[/tex]

[tex]3x^3 - 5x^2 - 10x + 9x^2 - 15x - 30[/tex]

Step 2:  Combine like terms

[tex]3x^3 - 5x^2 + 9x^2 - 15x - 10x - 30[/tex]

[tex](3x^2) + (-5x^2 + 9x^2) + (-15x - 10x) + (-30)[/tex]

[tex]3x^2 + 4x^2 - 25x - 30[/tex]

Answer:  [tex]3x^2 + 4x^2 - 25x - 30[/tex]