Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Circumference of the wheel is :

[tex]\qquad \tt \dashrightarrow \:c = 2 \pi r[/tex]

  • c = circumference

  • r = radius

Number of revolutions = 13, and distance travelled is 65 m.

So, we can infer that :

[tex]\qquad \tt \dashrightarrow \:c = \frac{distance \: covered}{number \: of \: revolutions} [/tex]

Now, equate both the equations ~

[tex]\qquad \tt \dashrightarrow \:2 \pi r = \frac{distance \: covered}{number \: of \: revolutions} [/tex]

[tex]\qquad \tt \dashrightarrow \:2 \pi r = \frac{65}{13} [/tex]

[tex]\qquad \tt \dashrightarrow \:2 \pi r = 5[/tex]

[tex]\qquad \tt \dashrightarrow \:r = \frac{5}{2 \pi} [/tex]

[tex]\qquad \tt \dashrightarrow \:r = \frac{5}{3.14 \times 2} [/tex]

[tex]\qquad \tt \dashrightarrow \:r = \frac{5}{6.28} [/tex]

[tex]\qquad \tt \dashrightarrow \:r \approx0.8 \: m[/tex]

[tex]\qquad \tt \dashrightarrow \:r \approx80 \: cm[/tex]

  • radius of wheel is 80 cm

[ To the hundredth place : 0.796 m ]

RELAXING NOICE
Relax