[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
Circumference of the wheel is :
[tex]\qquad \tt \dashrightarrow \:c = 2 \pi r[/tex]
Number of revolutions = 13, and distance travelled is 65 m.
So, we can infer that :
[tex]\qquad \tt \dashrightarrow \:c = \frac{distance \: covered}{number \: of \: revolutions} [/tex]
Now, equate both the equations ~
[tex]\qquad \tt \dashrightarrow \:2 \pi r = \frac{distance \: covered}{number \: of \: revolutions} [/tex]
[tex]\qquad \tt \dashrightarrow \:2 \pi r = \frac{65}{13} [/tex]
[tex]\qquad \tt \dashrightarrow \:2 \pi r = 5[/tex]
[tex]\qquad \tt \dashrightarrow \:r = \frac{5}{2 \pi} [/tex]
[tex]\qquad \tt \dashrightarrow \:r = \frac{5}{3.14 \times 2} [/tex]
[tex]\qquad \tt \dashrightarrow \:r = \frac{5}{6.28} [/tex]
[tex]\qquad \tt \dashrightarrow \:r \approx0.8 \: m[/tex]
[tex]\qquad \tt \dashrightarrow \:r \approx80 \: cm[/tex]
[ To the hundredth place : 0.796 m ]