Find the value of W

Answer:
[tex]\huge\underline{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}[/tex]
[tex]sum \: of \: angles\: of \: a \: polygon \: = \\(n - 2) \times 180\degree[/tex]
in the question , we've been given a five sided figure , i.e. , a pentagon.
sum of angles of a pentagon = ( 5 - 2 ) × 180°
[tex]\implies \: 3 \times 180\degree \\ \implies \: 540\degree[/tex]
thus we can say that ,
angle sum property of pentagon states that the sum of all the angles of a pentagon equals 540°.
therefore ,
Step-by-step explanation:
[tex]125\degree + 117\degree + (x + 6)\degree + x + (x - 44)\degree = 540\degree \\ \\ 125\degree + 117\degree + x + 6\degree + x + x - 44\degree = 540\degree \\ \\ 204\degree + 3x = 540\degree \\ \\ 3x = 540\degree - 204\degree \\ \\ 3x = 336\degree \\ \\ x = \cancel\frac{336}{3} \\ \\ x = 112\degree[/tex]
hope helpful ~
[tex]{\huge{\fcolorbox{purple}{blue}{\red{\boxed{\boxed{\boxed{\boxed{\underbrace{\overbrace{\mathfrak{\pink{\fcolorbox{green}{yellow}{Answer}}}}}}}}}}}}}[/tex]
To find :-
The value of x in the angles of Pentagon
Given :-
Here we have been provided 5 angles in Pentagon
x°, (x - 44)°, (x + 6)°, 125°, and 117°
Solution :-
We will find the value of x with the angle sum property.
Now, we will find the sum of angles of Pentagon
there is a formula
(n - 2) × 180°
n = no. of sides of above shape
here n = 5
(5 - 2) × 180°
3 × 180° = 540°
Now will add the above given angle in the diagram and put equal to 540°.
x° + (x - 44)° + (x + 6)° + 125° + 117° = 540° (angle sum property)
[tex]3x + 204{\degree} = 540{\degree} \\ 3x = 540{\degree} -204{\degree} \\ 3x = 336{\degree} \\ x = \frac{336{\degree}}{3} \\ x = 112{\degree}[/tex]
x = 112°
further we will find further 2 angles related to x.
x - 44 = 112 - 44 = 68°
x + 6 = 112 + 6 = 118°
Result :-
The all angles of Pentagon are
125°, 117°, 118°, 112°, and 68°.