Answer:
About 27 mL of water.
Explanation:
We can use the heat transfer equation. Recall that:
[tex]\displaystyle q = mC\Delta T[/tex]
Heat is transferred from the water with higher temperature to the water with lower temperature. Hence:
[tex]\displaystyle -q_1 = q_2[/tex]
Substituting yields:
[tex]-m_1C \Delta T_1 = m_2C\Delta T _2[/tex]
We can solve for m₁:
[tex]\displaystyle \begin{aligned} m_1 &= -\frac{m_2 C\Delta T_2}{ C \Delta T_1} \\ \\ & = -\frac{m_2\Delta T_2}{\Delta T _1}\end{aligned}[/tex]
The desired final temperature of water is 36.2 °C. Substitute and evaluate:
[tex]\displaystyle \begin{aligned} m_1 & = -\frac{(200\text{ mL})(36.2\text{ $^\circ$C}-29.5\text{ $^\circ$C})}{(36.2\text{ $^\circ$C}-84.5\text{ $^\circ$C})} \\ \\ & = -\frac{(200\text{ mL})(6.7\text{ $^\circ$C})}{-49.2\text{ $^\circ$C}}\\ \\ & =27\text{ mL}\end{aligned}[/tex]
In conclusion, about 27 mL of water should be added.