Respuesta :

Answer:

[-5, 4) ∪ (4, ∞)

Step-by-step explanation:

Given functions:

[tex]f(x)=\dfrac{1}{x-3}[/tex]

[tex]g(x)=\sqrt{x+5}[/tex]

Composite function:

[tex]\begin{aligned}(f\:o\:g)(x)&=f[g(x)]\\ & =\dfrac{1}{\sqrt{x+5}-3} \end{aligned}[/tex]

Domain: input values (x-values)

For [tex](f\:o\:g)(x)[/tex] to be defined:

[tex]x+5\geq 0 \implies x\geq -5[/tex]

[tex]\sqrt{x+5}\neq 3 \implies x\neq 4[/tex]

Therefore, [tex]-5\leq x < 4[/tex]  and  [tex]x > 4[/tex]

⇒  [-5, 4) ∪ (4, ∞)

RELAXING NOICE
Relax