Respuesta :

Answer:

[tex]\textsf{B)} \quad \dfrac{1}{3^9 \cdot 6^{18}}[/tex]

Step-by-step explanation:

[tex](3^3 \cdot 6^6)^{-3}[/tex]

[tex]\textsf{Apply exponent rule} \quad a^{-n}=\dfrac{1}{a^n}:[/tex]

[tex]\implies \dfrac{1}{(3^3 \cdot 6^6)^3}[/tex]

[tex]\textsf{Apply exponent rule} \quad (ab)^c=a^c \cdot b^c:[/tex]

[tex]\implies \dfrac{1}{(3^3)^3 \cdot (6^6)^3}[/tex]

[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]

[tex]\implies \dfrac{1}{3^9 \cdot 6^{18}}[/tex]

[tex]\\ \rm\Rrightarrow (3^3.6^6)^{-3}[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{1}{(3^36^6)^3}[/tex]

  • (a^n)^m=a^mn

[tex]\\ \rm\Rrightarrow \dfrac{1}{3^96^{18}}[/tex]

Option B

RELAXING NOICE
Relax