select the equivalent expression (3^3*6^6)^-3

Answer:
[tex]\textsf{B)} \quad \dfrac{1}{3^9 \cdot 6^{18}}[/tex]
Step-by-step explanation:
[tex](3^3 \cdot 6^6)^{-3}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^{-n}=\dfrac{1}{a^n}:[/tex]
[tex]\implies \dfrac{1}{(3^3 \cdot 6^6)^3}[/tex]
[tex]\textsf{Apply exponent rule} \quad (ab)^c=a^c \cdot b^c:[/tex]
[tex]\implies \dfrac{1}{(3^3)^3 \cdot (6^6)^3}[/tex]
[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]
[tex]\implies \dfrac{1}{3^9 \cdot 6^{18}}[/tex]
[tex]\\ \rm\Rrightarrow (3^3.6^6)^{-3}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{1}{(3^36^6)^3}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{1}{3^96^{18}}[/tex]
Option B