can i have some help? i'm kinda desperate AND please NO fake answers don't answer if you will give a fake answer
btw if you want an extra 50 points or more you could maybe help with another question i asked recently on my profile as not all of them received applicable answers

can i have some help im kinda desperate AND please NO fake answers dont answer if you will give a fake answer btw if you want an extra 50 points or more you cou class=

Respuesta :

Step-by-step explanation:

Vertex form is: [tex]a(x-h)^2+k[/tex]

a) [tex]a(x+2)^2+3=y[/tex]

To find a, plug (-4,1) in for x and y.

[tex]a(-4+2)^2+3=1[/tex]

[tex]4a=-2[/tex]

[tex]a=-1/2[/tex]

so a) is [tex]\frac{-1}{2} (x+2)^2+3[/tex]

b) .... I'm not sure what the second coordinate is.

c) [tex]a(x+2)^2-3[/tex]

Plug in (-5,6) for x and y.

[tex]6=a(-5+2)^2-3[/tex]

[tex]9=9a[/tex]

[tex]a=1[/tex]

so c) is [tex](x+2)^2-3[/tex]

d) [tex]a(x+2)^2+5[/tex]

Plug (1,-4) in for x and y.

[tex]-4=a(1+2)^2+5[/tex]

[tex]-9=9a[/tex]

[tex]a=-1[/tex]

so d) is [tex]-(x+2)^2+5[/tex]

Answer:

[tex]\textsf{(a)}\quad y=-\dfrac{1}{2}(x+2)^2+3[/tex]

[tex]\textsf{(b)}\quad y=a(x+1)^2-1[/tex]

[tex]\textsf{(c)}\quad y=(x+2)^2-3[/tex]

[tex]\textsf{(d)}\quad y=-(x+2)^2+5[/tex]

Step-by-step explanation:

Vertex form

[tex]y=a(x-h)^2+k[/tex]

where (h, k) is the vertex

-------------------------------------------------------------------------------------------

Part (a)

Given:  vertex at (-2, 3) passes through (-4 ,1)

Substituting the given vertex into the equation:

[tex]\implies y=a(x-(-2))^2+3[/tex]

[tex]\implies y=a(x+2)^2+3[/tex]

Substitute the given point into the equation to find a:

[tex]\implies 1=a(-4+2)^2+3[/tex]

[tex]\implies 1=4a+3[/tex]

[tex]\implies a=-\dfrac{1}{2}[/tex]

Substitute the found value of a to form the final equation:

[tex]y=-\dfrac{1}{2}(x+2)^2+3[/tex]

-------------------------------------------------------------------------------------------

Part (b)

Given:  vertex at (-1, -1) passes through ?)

Substituting the given vertex into the equation:

[tex]\implies y=a(x-(-1))^2+(-1)[/tex]

[tex]\implies y=a(x+1)^2-1[/tex]

Substitute the given point into the equation to find a:

**no point given**

-------------------------------------------------------------------------------------------

Part (c)

Given:  vertex at (-2, -3) passes through (-5, 6)

Substituting the given vertex into the equation:

[tex]\implies y=a(x-(-2))^2+(-3)[/tex]

[tex]\implies y=a(x+2)^2-3[/tex]

Substitute the given point into the equation to find a:

[tex]\implies 6=a(-5+2)^2-3[/tex]

[tex]\implies 6=9a-3[/tex]

[tex]\implies a=1[/tex]

Substitute the given point into the equation to find a:

[tex]y=(x+2)^2-3[/tex]

-------------------------------------------------------------------------------------------

Part (d)

Given:  vertex at (-2, 5) passes through (1, -4)

Substituting the given vertex into the equation:

[tex]\implies y=a(x-(-2))^2+5[/tex]

[tex]\implies y=a(x+2)^2+5[/tex]

Substitute the given point into the equation to find a:

[tex]\implies -4=a(1+2)^2+5[/tex]

[tex]\implies -4=9a+5[/tex]

[tex]\implies a=-1[/tex]

Substitute the given point into the equation to find a:

[tex]y=-(x+2)^2+5[/tex]

ACCESS MORE
EDU ACCESS