Answer:
[tex]\textsf{(a)}\quad y=-\dfrac{1}{2}(x+2)^2+3[/tex]
[tex]\textsf{(b)}\quad y=a(x+1)^2-1[/tex]
[tex]\textsf{(c)}\quad y=(x+2)^2-3[/tex]
[tex]\textsf{(d)}\quad y=-(x+2)^2+5[/tex]
Step-by-step explanation:
Vertex form
[tex]y=a(x-h)^2+k[/tex]
where (h, k) is the vertex
-------------------------------------------------------------------------------------------
Part (a)
Given: vertex at (-2, 3) passes through (-4 ,1)
Substituting the given vertex into the equation:
[tex]\implies y=a(x-(-2))^2+3[/tex]
[tex]\implies y=a(x+2)^2+3[/tex]
Substitute the given point into the equation to find a:
[tex]\implies 1=a(-4+2)^2+3[/tex]
[tex]\implies 1=4a+3[/tex]
[tex]\implies a=-\dfrac{1}{2}[/tex]
Substitute the found value of a to form the final equation:
[tex]y=-\dfrac{1}{2}(x+2)^2+3[/tex]
-------------------------------------------------------------------------------------------
Part (b)
Given: vertex at (-1, -1) passes through ?)
Substituting the given vertex into the equation:
[tex]\implies y=a(x-(-1))^2+(-1)[/tex]
[tex]\implies y=a(x+1)^2-1[/tex]
Substitute the given point into the equation to find a:
**no point given**
-------------------------------------------------------------------------------------------
Part (c)
Given: vertex at (-2, -3) passes through (-5, 6)
Substituting the given vertex into the equation:
[tex]\implies y=a(x-(-2))^2+(-3)[/tex]
[tex]\implies y=a(x+2)^2-3[/tex]
Substitute the given point into the equation to find a:
[tex]\implies 6=a(-5+2)^2-3[/tex]
[tex]\implies 6=9a-3[/tex]
[tex]\implies a=1[/tex]
Substitute the given point into the equation to find a:
[tex]y=(x+2)^2-3[/tex]
-------------------------------------------------------------------------------------------
Part (d)
Given: vertex at (-2, 5) passes through (1, -4)
Substituting the given vertex into the equation:
[tex]\implies y=a(x-(-2))^2+5[/tex]
[tex]\implies y=a(x+2)^2+5[/tex]
Substitute the given point into the equation to find a:
[tex]\implies -4=a(1+2)^2+5[/tex]
[tex]\implies -4=9a+5[/tex]
[tex]\implies a=-1[/tex]
Substitute the given point into the equation to find a:
[tex]y=-(x+2)^2+5[/tex]