Respuesta :

Answer:

[tex]x=45 \sqrt{5}[/tex]

Step-by-step explanation:

[tex]2 \log_3x+\log_35=4\log_315[/tex]

[tex]\textsf{Apply power log law}\quad n\log_ab=\log_ab^n:[/tex]

[tex]\implies \log_3x^2+\log_35=\log_315^4[/tex]

[tex]\textsf{Apply product log law}\quad \log_ab+\log_ac=\log_abc:[/tex]

[tex]\implies \log_35x^2=\log_315^4[/tex]

[tex]\textsf{Apply equality log law}\quad \log_ab=\log_ac \implies b=c:[/tex]

[tex]\implies 5x^2=15^4[/tex]

[tex]\implies x^2=10125[/tex]

[tex]\implies x=\pm \sqrt{10125}[/tex]

[tex]\implies x=\pm \sqrt{2025 \cdot 5}[/tex]

[tex]\implies x=\pm \sqrt{2025} \sqrt{5}[/tex]

[tex]\implies x=\pm 45 \sqrt{5}[/tex]

As we cannot take logs of negative numbers,

[tex]\implies x=45 \sqrt{5}\quad \sf only[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico