Respuesta :
Answer:
- 3.40 cm
Step-by-step explanation:
It is given that the area of a circle is 36.43cm² and we have to find the length of the radius.
So, first of we must know this formula :
⇒ πr² = Area(Circle)
- We will take the value of π as 3.14
Now, Substituting the given values in the formula :
⇒ 3.14 × r² = 36.43
⇒ r² = 36.43/3.14
⇒ r² = 11.60
⇒ r = √11.60
⇒ r = 3.40
Therefore,
- The radius of the circle is 3.40 cm
Hey ! there
Answer:
- Radius of circle = 3.40 cm
Step-by-step explanation:
In this question we are given with area of circle that is 36.43 cm² . And we are asked to find the length of radius of circle rounded to two decimal points .
We know that ,
[tex] \qquad \quad \frak{Area_{(Circle)} = \pi r {}^{2} } \quad \bigstar[/tex]
Where ,
- π = 3.14
- r = radius of circle
Solution : -
According to question , area of Circle is equal to 36.43 . So ,
[tex] \longrightarrow \qquad \: \pi r {}^{2} = 36.43[/tex]
Step 1 : Substituting value of π :
[tex] \longrightarrow \qquad \:3.14 \times r {}^{2} = 36.43[/tex]
Step 2 : Transposing 3.14 to right side :
[tex] \longrightarrow \qquad \: r {}^{2} = \cancel{\dfrac{36.43}{3.14} }[/tex]
On dividing 36.43 by 3.14 , We get :
[tex] \longrightarrow \qquad \: r {}^{2} = 11.60[/tex]
Step 3 : For removing square from r , We are applying root on both sides :
[tex] \longrightarrow \qquad \: \sqrt{r {}^{ 2 }} = \sqrt{ 11.60}[/tex]
We get :
[tex] \longrightarrow \qquad \:r = \sqrt{11.60} [/tex]
Step 4 : Finding square root of 11.60 , We get :
[tex] \longrightarrow \qquad \: \purple{\underline{\boxed{\frak{r = 3.40 \: cm}}}} [/tex]
- Therefore, radius of circle is 3.40 cm