Answer:
using [tex]\pi[/tex]: 65.45 in³ (nearest hundredth)
using [tex]\pi =3.14[/tex]: 65.42 in³ (nearest hundredth)
Step-by-step explanation:
The radius of the sphere is half the side length of the cube (see attached diagram). Therefore, the side length of the cube = 2r
Given:
[tex]\textsf{Volume of a cube}=x^3\quad \textsf{(where}\:x\:\textsf{is the side length)}[/tex]
[tex]\implies 125=(2r)^3[/tex]
[tex]\implies \sqrt[3]{125}=2r[/tex]
[tex]\implies 5=2r[/tex]
[tex]\implies r=\dfrac52[/tex]
Substitute the found value of r into the volume of a sphere equation:
[tex]\begin{aligned}\textsf{Volume of a sphere} & =\dfrac43 \pi r^3\\\\ & =\dfrac43 \pi \left(\dfrac52\right)^3\\\\ & =\dfrac43 \pi \left(\dfrac{125}{8}\right)\\\\ & =\dfrac{500}{24} \pi\\\\ & =\dfrac{125}{6} \pi\\\\ & =65.45\:\sf in^3\:(nearest\:hundredth) \end{aligned}[/tex]