Answer:
[tex]\displaystyle \large{f^{-1}(7)=5}[/tex]
Step-by-step explanation:
Given:
[tex]\displaystyle \large{f(x)=2x-3}[/tex]
To find:
[tex]\displaystyle \large{f^{-1}(7)}[/tex]
Inverse Function Definition:
Notation Definition (Example - Exponential Function and Logarithm are Inverse to each other.)
[tex]\displaystyle \large{f(x) = \{(x,y) \in \mathbb{R} \times \mathbb{R^{+}} \ | \ y=a^x, a\neq 1, a > 0 \}}\\\displaystyle \large{f^{-1}(x) = \{(x,y) \in \mathbb{R^{+}} \times \mathbb{R} \ | \ y=\log_a x, a\neq 1, a > 0 \}}[/tex]
Notice that both functions have swapped domain and range. Domain is set of all x-values while range is set of all y-values.
Inverse Property:
Back to the question, first, we have to find an inverse of linear function. We can do by swapping x and y [f(x)] variables.
[tex]\displaystyle \large{f(x)=2x-3 \to x=2f(x)-3}[/tex]
Solve for f(x):
[tex]\displaystyle \large{x=2f(x)-3}\\\displaystyle \large{x+3=2f(x)}\\\displaystyle \large{f(x)=\dfrac{x+3}{2}}\\\therefore \displaystyle \large{f^{-1}(x)=\dfrac{x+3}{2}}[/tex]
Therefore, the inverse is (x+3)/2. Next, we find [tex]\displaystyle \large{f^{-1}(7)}[/tex] which we can do by simply substituting x = 7 in the inverse.
[tex]\displaystyle \large{f^{-1}(7)=\dfrac{7+3}{2}}\\\displaystyle \large{f^{-1}(7)=\dfrac{10}{2}}\\\displaystyle \large{f^{-1}(7)=5}[/tex]
Therefore, the answer is 5.