Respuesta :
Simply distrbution and direct application of memorized integrals
I will refer the integration sign as int
J = Int secx(secx + tanx ) dx = int sec^2x + secxtanx dx
Remember int sec^2x dx= tanx +c
Int secxtanx = secx +c
If you wanna their proof just request
J = tanx + secx +c
I will refer the integration sign as int
J = Int secx(secx + tanx ) dx = int sec^2x + secxtanx dx
Remember int sec^2x dx= tanx +c
Int secxtanx = secx +c
If you wanna their proof just request
J = tanx + secx +c
Answer:
[tex]\displaystyle \int {\sec x(\sec x + \tan x)} \, dx = \tan x + \sec x + C[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {\sec x(\sec x + \tan x)} \, dx[/tex]
Step 2: Integrate
- [Integrand] Rewrite: [tex]\displaystyle \int {\sec x(\sec x + \tan x)} \, dx = \int {\sec^2x + \sec x \tan x} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int {\sec x(\sec x + \tan x)} \, dx = \int {\sec^2x} \, dx + \int {\sec x \tan x} \, dx[/tex]
- [Integrals] Trigonometric Integration: [tex]\displaystyle \int {\sec x(\sec x + \tan x)} \, dx = \tan x + \sec x + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
