Expand the logarithmic expression log3(2xy3z5). Question 9 options: A) 2(log3x + 3log3y + 5log3z) B) log32x + log3y3 + log3z5 C) log32 + log3x + 3log3y − 5log3z D) log32 + log3x + 3log3y + 5log3z

Respuesta :

Answer: D

Step-by-step explanation:

[tex]\log _{3}\left(2 x y^{3} z^{5}\right) \\ =\log _{3} 2+\log _{3} x+\log _{3} y^{3}+\log _{3} z^{5}[/tex]

[tex]\left(\because \log _{c}(a \cdot b)=\log _{c} a+\log _{c} b\right)[/tex]

[tex]=\log _{3} 2+\log _{3} x+3 \log _{3} y+5 \log _{3}z \rightarrow \left(\because \log _{c} a^{b}=b \log _{c} a\right)[/tex]

Therefore, Option D is the correct answer

ACCESS MORE