What is the value of x?
What is the value of y?

Answer:
Step-by-step explanation:
Use Pythagorean's theorem. The two shorter sides (6+x) and 20 are apart of a right triangles of a hypotenuse of (18+6). Therefore:
[tex](6+x)^2+20^2} =(18+6)^2[/tex]
[tex](6+x)^2+400 =576[/tex]
[tex](6+x)^2=176[/tex]
Take the square root of both sides:
[tex]6+x=\sqrt{176}[/tex]
[tex]x=\sqrt{176} -6[/tex]
Moving on to the smaller triangle, we can find the value of 'y' to be:
[tex]6^2+y^2=18^2[/tex]
[tex]y^2+36=324[/tex]
[tex]y^2=288[/tex]
[tex]y=\sqrt{288}[/tex]