Respuesta :

Answer:

One solution

Step-by-step explanation:

Discriminant

[tex]\textsf{Discriminant}:b^2-4ac}\quad\textsf{when}\:ax^2+bx+c=0[/tex]

[tex]\textsf{If}\quad b^2-4ac=0 \implies \textsf{one solution}[/tex]

[tex]\textsf{If}\quad b^2-4ac > 0 \implies \textsf{two solutions}[/tex]

[tex]\textsf{If}\quad b^2-4ac < 0 \implies \textsf{no solutions}[/tex]

Given equation:

[tex]-8x^2-8x-2=0[/tex]

Swap sides:

[tex]\implies 8x^2+8x+2=0[/tex]

Using discriminant:

[tex]\implies b^2-4ac=8^2-4(8)(2)=0[/tex]

Therefore, there is one solution

--------------------------------------------------------------------------------------------

Proof

[tex]8x^2+8x+2=0[/tex]

Divide both sides by 2:

[tex]\implies 4x^2+4x+1=0[/tex]

Separate the middle term:

[tex]\implies 4x^2+2x+2x+1=0[/tex]

Factor the first two terms and the last two terms separately:

[tex]\implies 2x(2x+1)+1(2x+1)=0[/tex]

Factor out the common term [tex](2x+1)[/tex]:

[tex]\implies (2x+1)(2x+1)=0[/tex]

Therefore:

[tex]\implies 2x+1=0[/tex]

[tex]\implies x=-\dfrac12[/tex]

Thus proving there is one solution.

  • -8x²-8x-2=0

Here

  • a=-8
  • b=-8
  • c=-2

Discriminate

  • D=b²-4ac
  • D=(-8)²-4(-8)(-2)
  • D=64-64
  • D=0

Roots are equal hence one solution

ACCESS MORE