Respuesta :
Answer:
One solution
Step-by-step explanation:
Discriminant
[tex]\textsf{Discriminant}:b^2-4ac}\quad\textsf{when}\:ax^2+bx+c=0[/tex]
[tex]\textsf{If}\quad b^2-4ac=0 \implies \textsf{one solution}[/tex]
[tex]\textsf{If}\quad b^2-4ac > 0 \implies \textsf{two solutions}[/tex]
[tex]\textsf{If}\quad b^2-4ac < 0 \implies \textsf{no solutions}[/tex]
Given equation:
[tex]-8x^2-8x-2=0[/tex]
Swap sides:
[tex]\implies 8x^2+8x+2=0[/tex]
Using discriminant:
[tex]\implies b^2-4ac=8^2-4(8)(2)=0[/tex]
Therefore, there is one solution
--------------------------------------------------------------------------------------------
Proof
[tex]8x^2+8x+2=0[/tex]
Divide both sides by 2:
[tex]\implies 4x^2+4x+1=0[/tex]
Separate the middle term:
[tex]\implies 4x^2+2x+2x+1=0[/tex]
Factor the first two terms and the last two terms separately:
[tex]\implies 2x(2x+1)+1(2x+1)=0[/tex]
Factor out the common term [tex](2x+1)[/tex]:
[tex]\implies (2x+1)(2x+1)=0[/tex]
Therefore:
[tex]\implies 2x+1=0[/tex]
[tex]\implies x=-\dfrac12[/tex]
Thus proving there is one solution.
- -8x²-8x-2=0
Here
- a=-8
- b=-8
- c=-2
Discriminate
- D=b²-4ac
- D=(-8)²-4(-8)(-2)
- D=64-64
- D=0
Roots are equal hence one solution