Respuesta :

Answer:

86.28 degrees

Step-by-step explanation:

Angle between vectors is

[tex] \cos(x) = \frac{cross \: product}{magnitudes \: multiplied} [/tex]

The cross product is

[tex]4 + 0 - 3 = 1[/tex]

The magnitudes of first vector is

[tex] \sqrt{1 {}^{2} + 2 {}^{2} + 3 {}^{2} } = \sqrt{14} [/tex]

The second vector magnitude is

[tex] \sqrt{17} [/tex]

So the magnitudes multiplied is

[tex] \sqrt{14} \times \sqrt{17} = \sqrt{238} [/tex]

So our equation will be

[tex] \cos(x) = \frac{1}{ \sqrt{238} } [/tex]

[tex]x = \cos {}^{ - 1} ( \frac{1}{ \sqrt{238} } ) [/tex]

X is about 86.28 degrees

ACCESS MORE