Answer:
86.28 degrees
Step-by-step explanation:
Angle between vectors is
[tex] \cos(x) = \frac{cross \: product}{magnitudes \: multiplied} [/tex]
The cross product is
[tex]4 + 0 - 3 = 1[/tex]
The magnitudes of first vector is
[tex] \sqrt{1 {}^{2} + 2 {}^{2} + 3 {}^{2} } = \sqrt{14} [/tex]
The second vector magnitude is
[tex] \sqrt{17} [/tex]
So the magnitudes multiplied is
[tex] \sqrt{14} \times \sqrt{17} = \sqrt{238} [/tex]
So our equation will be
[tex] \cos(x) = \frac{1}{ \sqrt{238} } [/tex]
[tex]x = \cos {}^{ - 1} ( \frac{1}{ \sqrt{238} } ) [/tex]
X is about 86.28 degrees