The unit vector normal to the plane is ; n = [tex]\frac{i}{\sqrt[3]{6} } - \frac{2j}{\sqrt[3]{6} } + \frac{7k}{\sqrt[3]{6} }[/tex]
Given data :
The unit vectors
a→=3i^-2j^-k^ and b→=i^+4j^+k^
The unit vector normal to the plane is calculated as
n = [tex]\frac{a*b}{|b*b|}[/tex] ---- ( 1 )
where ; a→ * b→ = 2i - 4j + 14k and |b * b| = [tex]\sqrt{216}[/tex]
back to equation ( 1 )
n = ( 2i - 4j + 14k ) / [tex]\sqrt{216}[/tex]
= [tex]\frac{i}{\sqrt[3]{6} } - \frac{2j}{\sqrt[3]{6} } + \frac{7k}{\sqrt[3]{6} }[/tex]
Hence we can conclude that The unit vector normal to the plane is ; n = [tex]\frac{i}{\sqrt[3]{6} } - \frac{2j}{\sqrt[3]{6} } + \frac{7k}{\sqrt[3]{6} }[/tex]
Learn more about unit vector : https://brainly.com/question/1615741