If a→=3i^-2j^-k^ and b→=i^+4j^+k^, find a unit vector n^ normal to the plane containing a→ and b→ such that a→, b→ and n^, in this order, form a right-handed system.​

Respuesta :

The unit vector normal to the plane is ; n = [tex]\frac{i}{\sqrt[3]{6} } - \frac{2j}{\sqrt[3]{6} } + \frac{7k}{\sqrt[3]{6} }[/tex]

Given data :

The unit vectors

a→=3i^-2j^-k^  and  b→=i^+4j^+k^

Determine the unit vector normal to the plane

The unit vector normal to the plane is calculated as

n = [tex]\frac{a*b}{|b*b|}[/tex]  ---- ( 1 )

where ; a→ * b→ =  2i - 4j + 14k  and  |b * b| = [tex]\sqrt{216}[/tex]  

back to equation ( 1 )

n = ( 2i - 4j + 14k ) / [tex]\sqrt{216}[/tex]

  = [tex]\frac{i}{\sqrt[3]{6} } - \frac{2j}{\sqrt[3]{6} } + \frac{7k}{\sqrt[3]{6} }[/tex]

Hence we can conclude that The unit vector normal to the plane is ; n = [tex]\frac{i}{\sqrt[3]{6} } - \frac{2j}{\sqrt[3]{6} } + \frac{7k}{\sqrt[3]{6} }[/tex]

Learn more about unit vector : https://brainly.com/question/1615741

ACCESS MORE