I will give brainliest if you answer please

Answer:
KN = 11
Step-by-step explanation:
In right triangle LNM, by Pythagoras theorem:
[tex]LN=\sqrt{LM^2 -MN^2} \\ \\ \implies \: LN=\sqrt{ {(100)}^{2} -(80)^2} \\ \\ \implies \: LN=\sqrt{ 10000 -6400} \\ \\ \implies \: LN=\sqrt{ 3600} \\ \\ \implies \: LN=60[/tex]
In right triangle LNK, by Pythagoras theorem:
[tex]KN = \sqrt{LK^2-LN^2}[/tex]
[tex]\implies KN = \sqrt{(61)^2-(60)^2}[/tex]
[tex]\implies KN = \sqrt{3721-3600}[/tex]
[tex]\implies KN = \sqrt{121}[/tex]
[tex]\implies\huge{\orange{ KN =11}}[/tex]
Answer:
[tex] \: [/tex]
Step-by-step explanation:
Before, Finding the length of KN, we must have to find the length of LN. So
[tex] \: [/tex]
Here, LNM is a right angled triangle where measure of two sides are given and we are to find the measure of the third side LN(Perpendicular).
[tex] \: [/tex]
We'll find the measure of third side with the help of the Pythagorean theorem.
[tex] \\ {\longrightarrow \pmb{\sf {\qquad (Base) {}^{2} + (Perpendicular {)}^{2} = (Hypotenuse {)}^{2} }}} \\ \\[/tex]
Here,
[tex] \: [/tex]
So, substituting the values in the above formula we get :
[tex]\\ {\longrightarrow \pmb{\sf {\qquad (NM) {}^{2} + (LN {)}^{2} = ( LM{)}^{2} }}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad (80) {}^{2} + (LN {)}^{2} = ( 100{)}^{2} }}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad (LN {)}^{2} = ( 100{)}^{2} - (80) {}^{2}}}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad (LN {)}^{2} = 10000 - 6400}}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad (LN {)}^{2} = 3600}}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad LN = \sqrt{3600} }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad LN = \frak{60}}}} \\ \\[/tex]
Therefore,
[tex] \\ [/tex]
As, we found the length of LN, now we can find the length of KN.
Where,
So, in the right angled triangle LKN, by Pythagorean theorem we get,
[tex]\\ {\longrightarrow \pmb{\sf {\qquad (KN) {}^{2} + (LN {)}^{2} = ( LK{)}^{2} }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad (KN) {}^{2} + {60}^{2} = ( 61{)}^{2} }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad (KN) {}^{2} = ( 61{)}^{2} - {(60)}^{2}}}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad (KN) {}^{2} =3721 - 3600}}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad (KN) {}^{2} = 121}}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad KN = \sqrt{121} }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad KN = \frak{11} }}} \\ \\[/tex]
Therefore,