Respuesta :

We know, Tan A = P/B
Here, Perpendicular = 24
Base = 7

We need to calculate Hypotenuse by Pythagoras Theorem, 
H² = 24² + 7²
H² = 576 + 49
H = √625
H = 25

Now, we know, Cos A = B/H = 7/25

In short, Your Answer would be 7/25

Hope this helps!
lukyo
If you're using the app, try seeing this answer through your browser:   https://brainly.com/question/2728271

______________


[tex]\mathsf{tan\,A=\dfrac{24}{7}}\\\\\\ \mathsf{\dfrac{sin\,A}{cos\,A}=\dfrac{24}{7}}\\\\\\ \mathsf{7\,sin\,A=24\,cos\,A}[/tex]


Square both sides:

[tex]\mathsf{(7\,sin\,A)^2=(24\,cos\,A)^2}\\\\ \mathsf{49\,sin^2\,A=576\,cos^2\,A}\qquad\quad\textsf{(but }\mathsf{sin^2\,A=1-cos^2\,A}\textsf{)}\\\\ \mathsf{49\cdot (1-cos^2\,A)=576\,cos^2\,A}\\\\ \mathsf{49-49\,cos^2\,A=576\,cos^2\,A}\\\\ \mathsf{49=576\,cos^2\,A+49\,cos^2\,A}[/tex]

[tex]\mathsf{49=625\,cos^2\,A}\\\\ \mathsf{cos^2\,A=\dfrac{49}{625}}\\\\\\ \mathsf{cos\,A=\pm\sqrt{\dfrac{49}{625}}}\\\\\\ \mathsf{cos\,A=\pm\sqrt{\dfrac{7^2}{25^2}}}\\\\\\ \mathsf{cos\,A=\pm\,\dfrac{7}{25}}[/tex]


Since [tex]\mathsf{tan\,A=\dfrac{24}{7},}[/tex] which is positive, then [tex]\mathsf{A}[/tex] lies either in the 1st or the 3rd quadrant.


•  If [tex]\mathsf{A}[/tex] is a 1st quadrant arc, then

[tex]\mathsf{cos\,A\ \textgreater \ 0\quad\Rightarrow\quad cos\,A=\dfrac{7}{25}\qquad\quad\checkmark}[/tex]


•  If [tex]\mathsf{A}[/tex] is a 3rd quadrant arc, then

[tex]\mathsf{cos\,A\ \textless \ 0\quad\Rightarrow\quad cos\,A=-\,\dfrac{7}{25}\qquad\quad\checkmark}[/tex]


I hope this helps. =)

ACCESS MORE