Respuesta :
The Bernoulli equation is almost identical to the standard linear ODE.
[tex]y'=P(x)y+Q(x)y^n[/tex]
Compare to the basic linear ODE,
[tex]y'=P(x)y+Q(x)[/tex]
Meanwhile, the Riccati equation takes the form
[tex]y'=P(x)+Q(x)y+R(x)y^2[/tex]
which in special cases is of Bernoulli type if [tex]P(x)=0[/tex], and linear if [tex]R(x)=0[/tex]. But in general each type takes a different method to solve. From now on, I'll abbreviate the coefficient functions as [tex]P,Q,R[/tex] for brevity.
For Bernoulli equations, the standard approach is to write
[tex]y'=Py+Qy^n[/tex]
[tex]y^{-n}y'=Py^{1-n}+Q[/tex]
and substitute [tex]v=y^{1-n}[/tex]. This makes [tex]v'=(1-n)y^{-n}y'[/tex], so the ODE is rewritten as
[tex]\dfrac1{1-n}v'=Pv+Q[/tex]
and the equation is now linear in [tex]v[/tex].
The Riccati equation, on the other hand, requires a different substitution. Set [tex]v=Ry[/tex], so that [tex]v'=R'y+Ry'=R'\dfrac vR+Ry'[/tex]. Then you have
[tex]y'=P+Qy+Ry^2[/tex]
[tex]\dfrac{v'-R'\dfrac vR}R=P+Q\dfrac vR+R\dfrac{v^2}{R^2}[/tex]
[tex]v'=PR+\left(Q+\dfrac{R'}R\right)v+v^2[/tex]
Next, setting [tex]v=\dfrac{u'}u[/tex], so that [tex]v'=\dfrac{uu''-(u')^2}{u^2}[/tex], allows you to write this as a linear second-order equation. You have
[tex]\dfrac{uu''-(u')^2}{u^2}=PR+\left(Q+\dfrac{R'}R\right)\dfrac{u'}u+\dfrac{(u')^2}{u^2}[/tex]
[tex]u''-\left(Q+\dfrac{R'}R\right)u'+PRu=0[/tex]
[tex]u''+Su'+Tu=0[/tex]
where [tex]S=-\left(Q+\dfrac{R'}R\right)[/tex] and [tex]T=PR[/tex].
[tex]y'=P(x)y+Q(x)y^n[/tex]
Compare to the basic linear ODE,
[tex]y'=P(x)y+Q(x)[/tex]
Meanwhile, the Riccati equation takes the form
[tex]y'=P(x)+Q(x)y+R(x)y^2[/tex]
which in special cases is of Bernoulli type if [tex]P(x)=0[/tex], and linear if [tex]R(x)=0[/tex]. But in general each type takes a different method to solve. From now on, I'll abbreviate the coefficient functions as [tex]P,Q,R[/tex] for brevity.
For Bernoulli equations, the standard approach is to write
[tex]y'=Py+Qy^n[/tex]
[tex]y^{-n}y'=Py^{1-n}+Q[/tex]
and substitute [tex]v=y^{1-n}[/tex]. This makes [tex]v'=(1-n)y^{-n}y'[/tex], so the ODE is rewritten as
[tex]\dfrac1{1-n}v'=Pv+Q[/tex]
and the equation is now linear in [tex]v[/tex].
The Riccati equation, on the other hand, requires a different substitution. Set [tex]v=Ry[/tex], so that [tex]v'=R'y+Ry'=R'\dfrac vR+Ry'[/tex]. Then you have
[tex]y'=P+Qy+Ry^2[/tex]
[tex]\dfrac{v'-R'\dfrac vR}R=P+Q\dfrac vR+R\dfrac{v^2}{R^2}[/tex]
[tex]v'=PR+\left(Q+\dfrac{R'}R\right)v+v^2[/tex]
Next, setting [tex]v=\dfrac{u'}u[/tex], so that [tex]v'=\dfrac{uu''-(u')^2}{u^2}[/tex], allows you to write this as a linear second-order equation. You have
[tex]\dfrac{uu''-(u')^2}{u^2}=PR+\left(Q+\dfrac{R'}R\right)\dfrac{u'}u+\dfrac{(u')^2}{u^2}[/tex]
[tex]u''-\left(Q+\dfrac{R'}R\right)u'+PRu=0[/tex]
[tex]u''+Su'+Tu=0[/tex]
where [tex]S=-\left(Q+\dfrac{R'}R\right)[/tex] and [tex]T=PR[/tex].