The length of a flag is 0.3 foot less than twice its width. If the perimeter is 14.4 feet longer than the width, find the dimensions of the flag.

Respuesta :

Answer:   The dimensions are:  5.7  ft.  by  3 ft.  .
_________________________________________________ 
(or, write as:  The length is 5.7 ft.   The width is 3 ft.).   {Note:  Do not forget to include the "units", which are "feet", or "ft.", in this case!}.
________________
Explanation:
___________________
Consider a flag to be a "rectangle".  We are asked to find the dimensions; which are the "length" and the "width".  Let "l" represent the length; and "w" represent the "width".   The "area", or "A", of a rectangle = the length multiplied by the width;  or:   "A = l * w " .   
____________________________________________________
So, given: "the length of a flag is 0.3 foot less than twice its width" ;
____________________________________________________
    We express this as:  " l = 2w - 0.3 " .
____________________________________________________
Now, note that the Perimeter, "P", of the rectangle:
____________________________________________________
 " P = 2l + 2w "  ; 
____________________________________________________
We are given:  "the perimeter is 14.4 feet longer than the width" ;
____________________________________________________
We express this as:  "P = 14.4 + w " ;
____________________________________________________
so:  P = 2l + 2w  = 14.4 + w ;
____________________________________________________
then:   2l + 2w = 14.4 + w . 
____________________________________________________
Since:  " l = 2w - 0.3" ;  we can substitute this value, "(2w - 0.3)" ,                                                for the "l" in the above equation; and solve for "w" ;
____________________________________________________
                    →   2l + 2w = 14.4 + w  ;
____________________________________________________
                    →   2(2w - 0.3) + 2w = 14.4 + w ; 
____________________________________________________
Now, subtract "w" from EACH SIDE of the equation:
_____________________________________________________
     2(2w - 0.3) + 2w - w = 14.4 + w - w ;
____________________________________________________
to get:  2(2w - 0.3) + w = 14.4;
_______________________________
Note the distributive property of multiplication:
__________________________________
a(b+c) = ab + ac ; AND:
a(b -c) = ab - ac ;
__________________________
So;   2(2w - 0.3) = (2*2w) - (2* 0.3) = 4w - 0.6 ; 
___________________________________________
Rewrite the equation, substituting:  "4w - 0.6" in lieu of:  "2(2w - 0.3)" ;
______________________________________________________
→ 2(2w - 0.3) + w = 14.4 ;  

→ Rewrite as:  4w - 0.6 + w = 14.4 ;
________________ ___________________________________  
 Now, combine the "like terms" that appear on the left-hand side of the equation:   +4w  + w = 5w ;  and rewrite the equation:
____________________________________________________
   →  5w - 0.6 = 14.4 ;
____________________________________________________
   →  Now, add "0.6" to EACH side of the equation:
____________________________________________________
             →  5w - 0.6 + 0.6 = 14.4 + 0.6 ; 
____________________________________________________
      to get:   5w = 15 ; 
____________________________________________________
Now, divide EACH side of the equation by "5" ;  to isolate "w" on one side of the equation; and to solve for "w" (the width, which is one of the dimensions); 
____________________________________________________
         →  5w / 5  = 15/ 5 ;
____________________________________________________
         →  w = 3 ;
_________________________________________

Now, we need to find the length, "l".
___________________________________
Since, " l = 2w - 0.3 ;  we can substitute our known value of "w", which is "3", into the equation, and solve for "l" ;
______________________________________________
         →  l = (2*3) - 0.3 = 6 - 0.3 = 5.7 ;
       
         →  l = 5.7 .
_____________________________________________
Now, to check our work, does:
___________________________
2l + 2w = 14.4 + w  ?  
_______________________________________________
Let us plug our solved values, "5.7" for "l", and "3" for "w"; so see if the equation holds true.
___________________________________________________
Let us start with the right side of the equation:
___________________________________________________
14.4 + w ;   14.4 + w = 14.4 + 3 = 17.4. 
___________________________________________________
Now, let us consider the left side of of the equation:
___________________________________________________
2l + 2w = (2*5.7) + (2*3) = 11.4 + 6 = 17.4 .
___________________________________________________
17.4 =? 17.4 ?  Yes!.
___________________________________________________
So, the answer is:  The dimensions are:  5.7  ft.  by  3 ft.  .

(or, write as:  The length is 5.7 ft.   The width is 3 ft.).

{Note:  Do not forget to include the "units", which are "feet", or "ft.", in this case!}.
__________________________________________________
RELAXING NOICE
Relax