Respuesta :

The expression that is equivalent to [tex]Cos(\frac{\pi }{2}+r )[/tex] is [tex]-Sinr[/tex].

Given trigonometric expression is:

[tex]Cos(\frac{\pi }{2}+r )[/tex]

What is the value of [tex]Cos(\frac{\pi }{2}+\theta )[/tex]?

The value of [tex]Cos(\frac{\pi }{2}+\theta )[/tex] is [tex]-Sin\theta[/tex] because [tex]\frac{\pi }{2} +\theta[/tex] lies in the second quadrant and the cosine function is negative in the second quadrant.

So, [tex]Cos(\frac{\pi }{2}+r )= -Sin r[/tex]

The range of sine and cosine functions is the same i.e. [-1,1].

Both the functions are periodic functions with periods 2π.

Hence, the expression that is equivalent to [tex]Cos(\frac{\pi }{2}+r )[/tex] is [tex]-Sinr[/tex].

To get more about trigonometric functions visit:

https://brainly.com/question/2193113