Respuesta :
Answer:
-4 and -16
Step-by-step explanation:
Let x = first number
Let y = second number
Given:
- The two numbers multiply to 64
⇒ xy = 64
Given:
- The two numbers add to -20
⇒ x + y = -20
Rewrite x + y = -20 to make x the subject:
⇒ x = -20 - y
Substitute into xy = 64 and solve for y:
⇒ (-20 - y)y = 64
⇒ -20y - y² = 64
⇒ y² + 20y + 64 = 0
⇒ (y + 4)(y + 16) = 0
⇒ y = -4, y = -16
As x + y = -20
If y = -4 then x = -16
If y = -16 then x = -4
Therefore, the two numbers are -4 and -16
Let they be a and b
- a+b=-20--(1)
- ab=64
So
[tex]\\ \rm\rightarrowtail (a-b)^2=(a+b)^2-4ab[/tex]
[tex]\\ \rm\rightarrowtail (a-b)^2=(-20)^2-4(64)=400-256=144[/tex]
[tex]\\ \rm\rightarrowtail a-b=12\dots(2)[/tex]
From both equations
- 2a=-8=>a=-4
- -4+b=-20
- b=-16