Respuesta :
Answer:
[tex]\boxed{a = 6.4}[/tex]
Step-by-step explanation:
Given:
[tex]x:y = (4):(5)[/tex]
Let the value of "x" be known as "a".
[tex]x:y = a:8[/tex]
Setting up the proportion:
[tex]\rightarrow 4:5 = a :8[/tex]
Multiplying the middles and the extremes:
[tex]\rightarrow 5a = 4 \times 8[/tex]
Simplifying the RHS:
[tex]\rightarrow a = \dfrac{4 \times 8}{5}[/tex]
[tex]\rightarrow \boxed{a = 6.4}[/tex]
Thus, the value of x is 6.4 when y is 8.
Answer:
[tex]\sf x=\dfrac{32}{5}[/tex]
(or x = 6.4 if you want it in decimal form)
Step-by-step explanation:
If y and x have a proportional relationship, then:
- y = kx (for some constant k)
Given:
- x = 4
- y = 5
Substitute the given values into the equation to find k:
⇒ 5 = k(4)
⇒ k = 5/4
Therefore, [tex]\sf y=\dfrac54x[/tex]
When y = 8, substitute y = 8 into the equation and solve for x:
[tex]\sf \implies \dfrac54x=8[/tex]
[tex]\sf \implies x=8 \cdot \dfrac45[/tex]
[tex]\sf \implies x=\dfrac{32}{5}[/tex]