Respuesta :
Answer:
[tex]2551\dfrac{1}{2}[/tex]
Step-by-step explanation:
[tex]\bf l = 20\dfrac{\sf 1}{4} \ in = \dfrac{81}{4} \ in[/tex]
[tex]\bf w = 10\dfrac{1}{2} = \dfrac{21}{2} \ in\\\\\\h = 12 \ in[/tex]
Volume of rectangular prism = l*w*h
[tex]= \dfrac{81}{4}*\dfrac{21}{2}*12\\\\\\= 81 *\dfrac{21}{2}*3\\\\\\= \dfrac{5103}{2}\\\\\\= 2551 \dfrac{1}{2} \ cubic \ inches[/tex]
Answer:
[tex]\sf 2551\frac12 \ cubic \ inches[/tex]
Step-by-step explanation:
volume of a cuboid = width × length × height
Given:
- [tex]\sf width=10\frac12 \ in[/tex]
- [tex]\sf length=20\frac14 \ in[/tex]
- [tex]\sf height=12 \ in[/tex]
Substituting given values into the formula for volume:
[tex]\sf \implies volume=10\frac12 \times 20\frac14 \times 12[/tex]
[tex]\sf =\dfrac{21}{2} \times \dfrac{81}{4} \times \dfrac{12}{1}[/tex]
[tex]\sf =\dfrac{21 \times 81 \times 12}{2 \times 4 \times 1}[/tex]
[tex]\sf =\dfrac{20412}{8}[/tex]
[tex]\sf =2551\frac12 \ in^3[/tex]