Respuesta :

Answer:

○ [tex]\displaystyle \textcolor{black}{C.}\:\sqrt{193}\:km.[/tex]

Step-by-step explanation:

Use the Pythagorean Theorem to define the hypotenuse:

[tex]\displaystyle a^2 + b^2 = c^2 \\ \\ 7^2 + 12^2 = x^2 \hookrightarrow 49 + 144 = x^2 \hookrightarrow \sqrt{193} = \sqrt{x^2} \\ \\ \boxed{\sqrt{193} = x}[/tex]

I am joyous to assist you at any time.

[tex] \huge \underline\text{ Hello There}[/tex]

[tex] \text{We know, Pythagoras Theorem}[/tex]

[tex]\implies \text{ (Hypotenuse)²= (Base)² + (Altitude)²}[/tex]

[tex] \text{Here, \red{Hypotenuse}= x, \red{Base}= 7, \red{Altitude}= 12}[/tex]

[tex] \underline \text{To Find, } \text{Value of'x'}[/tex]

[tex] \huge \underline\text \red {Solution}[/tex]

[tex] \implies {x}^{2} = (7) {}^{2} + {(12)}^{2} \\ \implies(x) {}^{2} = 49 + 144 \\ \implies( {x})^{2} = 193 \\ \implies x = \sqrt{193} [/tex]

[tex] \therefore \text{Hypotenuse}= \sqrt{ 193} \text{ km}[/tex]

[tex] \text{Correct Opt. C}= \sqrt{ 193} \text{ km}[/tex]