Answer:
See below.
Explanation:
According to the question, we know that,
work done is given by, [tex]W=qV[/tex]
and change in kinetic energy is, Δ [tex]KE=W=1=1/2[mv^{2} ][/tex]
therefore equating both the equations we get,
[tex]qV=1/2[mv^{2} ][/tex] ⇒ [tex]V=\frac{mv^{2} }{2q}[/tex]
m= mass of electron = [tex]9.1*10^{-31} kg[/tex]
q= charge on an electron = [tex]1.6*10^{-19} C[/tex]
v= speed of electron= 700000m/s
substituting the values in the above equation, we get
[tex]V=\frac{9.1*10^{-31} *(700000)^{2} }{2*1.6*10^{-19} } =1.39V[/tex]
(1). the potential difference that stopped the electron is 1.39 volts.
now the kinetic energy equation is : 2 ways[tex]KE=1/2[mv^{2} ]=\frac{9.1*10^{-31} *700000^{2} }{2} =2.22*10^{-19} J\\[/tex]
or [tex]KE=\frac{2.22*10^{-19} }{1.6*10^{-19} } =1.39eV[/tex]
(2). the initial kinetic energy of the electron is 1.39eV.