Respuesta :
Answer:
- Length of rectangle = 63 m
- Width of rectangle = 21 m
Step-by-step explanation:
Given:
- Perimeter of rectangle = 168 m
- Length of rectangle is five times the width
To Find:
- Length and Width
Solution:
Let's assume width of rectangle x m and length of rectangle be 3x m. To calculate the dimensions of the rectangle we will use the formula of Perimeter of the rectangle
Perimeter of rectangle = 2(L + B)
Substituting the required values:
→ 168 = 2(3x + x)
→ 168 = 2(4x)
→ 168/2 = 4x
→ 84 = 4x
→ 84/4 = x
→ 21 = x
Hence,
- Length of the Rectangle = 3x = 3(21) = 63 m
- Wdith of the rectangle = x = 21 m
Answer:
- Length = 70 metre
- Width = 14 metre
⠀
Step-by-step explanation :
⠀
As, it is given that, the perimeter of a rectangle is 168 m and its length is five times its width and we are to find the length and width of the rectangle. So,
⠀
Let us assume the width of the rectangle as w metre and therefore, the length will be 5w metre .
⠀
Now, According to the Question :
⠀
[tex]{\longrightarrow \qquad { \pmb{\frak {2 ( Length + Breadth )= Perimeter_{(Rectangle)} }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{2 (5 w + w )= 168 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{2 (6 w )= 168 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{12 w = 168 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf \: w = \dfrac{168}{12} }}}[/tex]
⠀
[tex]{\longrightarrow \qquad { \underline{ \boxed{ \pmb {\frak{ w = 14 }}}}}} \: \: \bigstar[/tex]
⠀
Therefore,
- The width of the rectangle 14 metre .
⠀
Now, we are to find the length of the rectangle :
⠀
[tex]{\longrightarrow \qquad { { { \pmb {\frak{ Length = 5w }}}}}} \: \: [/tex]
⠀
[tex]{\longrightarrow \qquad { { { \pmb {\frak{ Length = 5 \times 14 }}}}}} \: \: [/tex]
⠀
[tex]{\longrightarrow \qquad { \underline{ \boxed{ \pmb {\frak{ Length = 70 }}}}}} \: \: \bigstar[/tex]
⠀
Therefore,
- The length of the rectangle is 70 metre