Respuesta :
Steps to finding the line in the diagram with the format 'ax + by = c
1. Find the slope
- To find the slope, we need any two points on the line --> (0,4) and (3,0)
[tex]Slope = \frac{y2-y1}{x2-x1} =\frac{4-0}{0-3} =-\frac{4}{3}[/tex]
2. Set up, with any one point on the line and the slope, in point-slope form
[tex](y-y0)=m(x-x0)\\(y-4)=-\frac{4}{3} (x-0)\\y-4 = -\frac{4}{3} x\\\frac{4}{3}x+y = 4[/tex]
Answer: [tex]\frac{4}{3}x+y = 4[/tex]
Hope that helps!
Answer:
[tex]\sf 4x+3y=12[/tex]
Step-by-step explanation:
Choose two points on the line:
Let [tex]\sf (x_1,y_1)=(0,4)[/tex]
Let [tex]\sf (x_2,y_2)=(3,0)[/tex]
Use the slope formula to find the slope of the line:
[tex]\sf slope(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{0-4}{3-0}=-\dfrac43[/tex]
Use the point-slope formula to find the equation of the line:
[tex]\sf y-y_1=m(x-x_1)[/tex]
Substitute values into the formula:
[tex]\sf y-4=-\dfrac43(x-0)[/tex]
Expand the brackets:
[tex]\sf y-4=-\dfrac43x[/tex]
Add 4 to both sides:
[tex]\sf y=-\dfrac43x+4[/tex]
Rearrange into the form [tex]ax+by=c[/tex]
Multiply both sides by 3
[tex]\sf 3y=-4x+12[/tex]
Add 4x to both sides:
[tex]\sf 4x+3y=12[/tex]