Respuesta :
Answer:
[tex]y = \dfrac{3}{2} x + 9[/tex]
Step-by-step explanation:
We would like to write the given equation in slope intercept form of the line .
[tex]\longrightarrow 6x - 4y = -36 [/tex]
The slope intercept form of the line is [tex] y = mx + c [/tex] , where
- [tex] m[/tex] is the slope
- [tex] (x,y)[/tex] is a point on the line .
- [tex] c [/tex] is the y intercept .
we can rewrite the given equation as ,
[tex]\longrightarrow 6x - 4y = -36 \\ [/tex]
[tex]\longrightarrow -4y = -36 -6x \\ [/tex]
[tex]\longrightarrow -4y = -6( x + 6)\\[/tex]
[tex]\longrightarrow y =\dfrac{-6}{-4}(x + 6)\\[/tex]
[tex]\longrightarrow y = \dfrac{3}{2}(x+6)\\ [/tex]
[tex]\longrightarrow y = \dfrac{3}{2}x +\dfrac{3}{2}\times 6\\[/tex]
[tex]\longrightarrow \underline{\underline{\pmb{ y =\dfrac{3}{2}x +9}}}{}[/tex]
This is the required equation of line in slope intercept form , with ;
- [tex]m = \dfrac{ 3}{2} [/tex]
- [tex]c = 9[/tex]