Respuesta :

Answer:

[tex]y = \dfrac{3}{2} x + 9[/tex]

Step-by-step explanation:

We would like to write the given equation in slope intercept form of the line .

[tex]\longrightarrow 6x - 4y = -36 [/tex]

The slope intercept form of the line is [tex] y = mx + c [/tex] , where

  • [tex] m[/tex] is the slope
  • [tex] (x,y)[/tex] is a point on the line .
  • [tex] c [/tex] is the y intercept .

we can rewrite the given equation as ,

[tex]\longrightarrow 6x - 4y = -36 \\ [/tex]

[tex]\longrightarrow -4y = -36 -6x \\ [/tex]

[tex]\longrightarrow -4y = -6( x + 6)\\[/tex]

[tex]\longrightarrow y =\dfrac{-6}{-4}(x + 6)\\[/tex]

[tex]\longrightarrow y = \dfrac{3}{2}(x+6)\\ [/tex]

[tex]\longrightarrow y = \dfrac{3}{2}x +\dfrac{3}{2}\times 6\\[/tex]

[tex]\longrightarrow \underline{\underline{\pmb{ y =\dfrac{3}{2}x +9}}}{}[/tex]

This is the required equation of line in slope intercept form , with ;

  • [tex]m = \dfrac{ 3}{2} [/tex]
  • [tex]c = 9[/tex]

Answer:

Refer to the attachment

Ver imagen PurpleSoul