Respuesta :

Answer:

[tex]x = -9[/tex]

Step-by-step explanation:

Given equation:

[tex]25^{2x+3} = 125^{2x+8}[/tex]

Convert 25 and 125 to base 5:

[tex]\implies (5^2)^{2x+3} = (5^3)^{2x+8}[/tex]

Apply exponent rule  [tex](a^b)^c=a^{bc}[/tex]

[tex]\implies 5^{2(2x+3)} = 5^{3(2x+8)}[/tex]

If [tex]a^{f(x)}=a^{g(x)}[/tex] then [tex]f(x)=g(x)[/tex]:

[tex]\implies 2(2x+3) = 3(2x+8)[/tex]

Expand:

[tex]\implies 4x+6 = 6x+24[/tex]

Subtract 6x from both sides:

[tex]\implies -2x+6 = 24[/tex]

Subtract 6 from both sides:

[tex]\implies -2x=18[/tex]

Divide both sides by -2:

[tex]\implies x=-9[/tex]

Let's solve up

[tex]\\ \rm\rightarrowtail 25^{2x+3}=125^{2x+8}[/tex]

[tex]\\ \rm\rightarrowtail 5^{2(2x+3)}=5^{3(2x+8)}[/tex]

[tex]\\ \rm\rightarrowtail 5^{4x+6}=5^{6x+24}[/tex]

[tex]\\ \rm\rightarrowtail 4x+6=6x+24[/tex]

[tex]\\ \rm\rightarrowtail -18=2x[/tex]

[tex]\\ \rm\rightarrowtail x=-9[/tex]