Respuesta :
Answer:
[tex]\sf y= \dfrac{1}{2}x-5[/tex]
Explanation:
- coordinates taken: (0, -5), (6, -2)
slope:
[tex]\rightarrow \sf \dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\rightarrow \sf \dfrac{-2--5}{6-0}[/tex]
[tex]\rightarrow \sf \dfrac{1}{2}[/tex]
equation in slope intercept form:
- y = m(x) + b [ where "m is slope", "b is y-intercept" ]
[tex]\sf y= \dfrac{1}{2}x-5[/tex]
Answer:
[tex]y=\frac{1}{2}x-5[/tex]
Step-by-step explanation:
Slope-intercept form: y = mx + b
m = slope
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
To find slope, we use points on the line.
Here, I will be suing (-6, -8) and (8, -1)
[tex]m=\frac{1-(-8)}{8-(-6)} \\\\m=\frac{-1+8}{8+6} \\\\m=\frac{7}{14}\\\\m=\frac{1}{2}[/tex]
[tex]y=mx+b[/tex]
[tex]y=\frac{1}{2} x+b\\[/tex]
Now, we use either of our points (-6, -8) OR (8, 1) to find b.
I will be using (8, -1):
[tex]y=\frac{1}{2}x+b\\\\-1=\frac{1}{2}(8)+b\\\\-1=4+b\\\\-4-4\\\\-5=b[/tex]
[tex]y=\frac{1}{2}x+b== > y=\frac{1}{2}x-5[/tex]
Check your answer manually: (-6, -8)
[tex]y=\frac{9}{14}x-\frac{29}{7}\\\\-8=\frac{9}{14}(-6)-\frac{29}{7}\\\\-8=\frac{9}{7}(-3)-\frac{29}{7}\\\\-8=-\frac{27}{7}-\frac{29}{7}\\\\-8=-\frac{56}{7}\\\\-8=-8[/tex]
This statement is correct.
*You can also view the attached graph to verify the answer, meaning that those two points should lie on the same line.*
Hope this helps!