Respuesta :
Answers:
1) [tex]\sf \boxed{1} \ x^2 + \boxed{2} \ x -24[/tex]
2) [tex]\sf \boxed{2} \ x^2+ \boxed{-1} \ x-15[/tex]
3) [tex]\sf \boxed{6} \ x^2+\boxed{19} \ x+10[/tex]
4) [tex]\sf \boxed{2} \ x^2+\boxed{-11} \ x+5[/tex]
solving step wise:
1)
- (x+6)(x-4)
- x² + 6(x) -4(x) -24
- x² + 2(x) - 24
2)
- (2(x)+5)(x-3)
- 2(x)² - 6(x)+5(x)-15
- 2(x)² - x - 15
3)
- (3(x)+2)(2(x)+5)
- 6(x)²+15(x)+4(x)+10
- 6(x)² + 19(x)+10
4)
- (2(x)-1)(x-5)
- 2(x)² -10(x)-x+5
- 2(x)² -11(x)+5
#1
- (x+6)(x-4)
- x(x-4)+6(x-4)
- x^2-4x+6x-24
- x^2+2x-24
#2
- (2x+5)(x-3)
- 2x(x-3)+5(x-3)
- 2x^2-6x+5x-15
- 2x^2-x-15
#3
- (3x+2)(2x+5)
- 3x(2x+5)+2(2x+5)
- 6x^2+15x+4x+10
- 6x^2+19x+10
#4
- (2x-1)(x-5)
- 2x(x-5)-1(x-5)
- 2x^2-10x-x+5
- 2x^2-11x+5