Respuesta :

Answer:

  • 100.48 cm² (Option 2)

Step-by-step explanation:

We know,

[tex]{\longrightarrow \qquad \boldsymbol{\pmb{Area_{(semicircle)} = \dfrac{1}{2}( \pi {r}^{2} ) }}}[/tex]

Where,

  • r is the radius of the semicircle. Here, the radius is 8 cm .

  • We will take the value of π as 3.14 .

Now, Substituting the values in the formula :

[tex]{\longrightarrow \qquad \rm{{Area_{(semicircle)} = \it \dfrac{1}{2} \times 3.14 \times ({8})^{2} }}}[/tex]

[tex]{\longrightarrow \qquad \rm{{Area_{(semicircle)} = \it \dfrac{1}{ \cancel2} \times 3.14 \times \cancel{64} }}}[/tex]

[tex]{\longrightarrow \qquad \rm{{Area_{(semicircle)} = \it {1} \times 3.14 \times 32 }}}[/tex]

[tex]{\longrightarrow \qquad \rm{{Area_{(semicircle)} = \it {1} \times 100.48 }}}[/tex]

[tex]{\longrightarrow \qquad \boldsymbol{ \pmb{Area_{(semicircle)} \approx \it 100.48 }}}[/tex]

Therefore,

  • The area of the semicircle is 100.48 cm² approximately .

Answer:

100.48 cm² ( option 2 )

Step-by-step explanation:

Given:-

  • Radius of semicircle :- 8cm

To find:-

  • Area of the figure

Solution:-

Area of semi-circle :-

[tex] \frac{1}{2} \pi \: r {}^{2} [/tex]

1/2 × 3.14 × 8²

[tex]100.48 \: cm {}^{2} [/tex]