Respuesta :

So, the definite integral  [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx= - 74[/tex]

Given that

[tex]\int\limits^1_0 {x^{2} } \, dx = 13[/tex]

We find

[tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx[/tex]

Definite integrals

Definite integrals are integral values that are obtained by integrating a function between two values.

So, [tex]Integral \int\limits^1_0 {(4 - 6x^{2} )} \, dx[/tex]

So, [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6\int\limits^1_0 {x^{2} } \, dx[/tex]

Since

[tex]\int\limits^1_0 {x^{2} } \, dx = 13[/tex],

Substituting this into the equation the equation, we have

[tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx = 4 - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6 X 13 \\= 4 - 78\\= -74[/tex]

So, [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx= - 74[/tex]

Learn more about definite integrals here:

https://brainly.com/question/17074932

The value of the function [tex]\rm \int\limits{(4-6x^2)} \, dx[/tex] is -74.

What is a definite integral?

A definite Integral is a difference between the values of the integral at the specified upper and lower limit of the independent variable.

The given function is;

[tex]\rm \int\limits^1_0 {x^2} \, dx=13[/tex]

Calculation of the value of the function by using integration;

[tex]\rm= \int\limits{(4-6x^2)} \, dx \\\\=4 \int\limits^1_0 {} \, dx -6\int\limits^1_0 {x^2} \, dx \\\\=4 \int\limits^1_0 {} \, dx -6(13)\\\\ =4[x]^1_0-78\\\\= 4[1-0]-78\\\\=4-78\\\\=-74[/tex]

Hence, the value of the function [tex]\rm \int\limits{(4-6x^2)} \, dx[/tex] is -74.

To know more about definite integration click the link given below.

https://brainly.com/question/18125359

#SPJ4