A model of Earth is located 7600 meters from the Globe Arena in Sweden’s solar system model. The volume of the model is approximately 3052.08 cubic centimeters. What is the length of the radius of the Earth model?

Respuesta :

Answer:

The length of the radius of the mudel is 9 cm

Step-by-step explanation:

[tex]By\ the\ topic[/tex]

[tex]The\ volume\ of\ the\ mudel\primes\ is\ 3052.08{\rm cm}^3[/tex]

[tex]Formula\ for\ the\ volume\ of\ the\ sphere\ is[/tex]

[tex]\frac{4}{3}\pi\ r^3[/tex]

[tex]\frac{4}{3}\pi\ r^3=3052.08[/tex]

[tex]\pi\ r^3=\frac{3}{4}\times3052.08=2289.06[/tex]

[tex]\gamma3=2289.06\div\pi[/tex]

[tex]\gamma=\sqrt{\frac{2289.06}{\pi}}\approx\sqrt{\frac{2289.06}{3.14}}+\sqrt{729}[/tex]

[tex]r=9cm[/tex]

[tex]7hus,\ the\ length\ of\ the\ vadius\ of\ eanth[/tex]

[tex]mudel\ is\ 9\ cm[/tex]

[tex]Application\ of\ the\ volume\ of\ the\ spheve?[/tex]

I hope this helps you

:)