Respuesta :
Apply Thales theorem
[tex]\\ \rm\rightarrowtail \dfrac{MR}{RN}=\dfrac{MQ}{QP}[/tex]
[tex]\\ \rm\rightarrowtail \dfrac{10}{RN}=\dfrac{8}{5}[/tex]
[tex]\\ \rm\rightarrowtail 8RN=50[/tex]
[tex]\\ \rm\rightarrowtail RN=50/8[/tex]
[tex]\\ \rm\rightarrowtail RN=6.25[/tex]
Answer:
RN = 6.25
Step-by-step explanation:
Triangle Proportionality Theorem: If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.
Therefore,
MQ : MP = MR : MN
⇒ 8 : (8 + 5) = 10 : (10 + RN)
⇒ 8 : 13 = 10 : (10 + RN)
⇒ [tex]\sf\dfrac{8}{13}=\dfrac{10}{10+RN}[/tex]
Cross multiply and solve:
⇒ 8(10 + RN) = 10 × 13
⇒ 80 + 8RN = 130
⇒ 8RN = 130 - 80
⇒ 8RN = 50
⇒ RN = 50 ÷ 8
⇒ RN = 6.25