Answer:
[tex]\displaystyle 11,3[/tex]
Step-by-step explanation:
Use the Law of Cosines to find the length of the third edge:
Solving for Angles
[tex]\displaystyle \frac{a^2 + b^2 - c^2}{2ab} = cos\angle{C} \\ \frac{a^2 - b^2 + c^2}{2ac} = cos\angle{B} \\ \frac{-a^2 + b^2 + c^2}{2bc} = cos\angle{A}[/tex]
Use [tex]\displaystyle cos^{-1}[/tex]towards the end or you will throw your result off!
Solving for Edges
[tex]\displaystyle b^2 + a^2 - 2ba\:cos\angle{C} = c^2 \\ c^2 + a^2 - 2ca\:cos\angle{B} = b^2 \\ c^2 + b^2 - 2cb\:cos\angle{A} = a^2[/tex]
Take the square root of the final result or it will be thrown off!
Let us get to wourk:
[tex]\displaystyle 10^2 + 7,9^2 - 2[10][7,9]\:cos\:77,5 = a^2 \hookrightarrow 100 + 62,41 - 158\:cos\:77,5 = a^2 \hookrightarrow \sqrt{128,212541} = \sqrt{a^2}; 11,323097677... \\ \\ \boxed{11,3 \approx a}[/tex]
I am joyous to assist you at any time.