Respuesta :

Answer:

[tex]\displaystyle 11,3[/tex]

Step-by-step explanation:

Use the Law of Cosines to find the length of the third edge:

Solving for Angles

[tex]\displaystyle \frac{a^2 + b^2 - c^2}{2ab} = cos\angle{C} \\ \frac{a^2 - b^2 + c^2}{2ac} = cos\angle{B} \\ \frac{-a^2 + b^2 + c^2}{2bc} = cos\angle{A}[/tex]

Use [tex]\displaystyle cos^{-1}[/tex]towards the end or you will throw your result off!

Solving for Edges

[tex]\displaystyle b^2 + a^2 - 2ba\:cos\angle{C} = c^2 \\ c^2 + a^2 - 2ca\:cos\angle{B} = b^2 \\ c^2 + b^2 - 2cb\:cos\angle{A} = a^2[/tex]

Take the square root of the final result or it will be thrown off!

Let us get to wourk:

[tex]\displaystyle 10^2 + 7,9^2 - 2[10][7,9]\:cos\:77,5 = a^2 \hookrightarrow 100 + 62,41 - 158\:cos\:77,5 = a^2 \hookrightarrow \sqrt{128,212541} = \sqrt{a^2}; 11,323097677... \\ \\ \boxed{11,3 \approx a}[/tex]

I am joyous to assist you at any time.