Here is the solution for previous question
[tex]\\ \rm\rightarrowtail T=2\pi\sqrt{\dfrac{m}{k}}[/tex]
[tex]\\ \rm\rightarrowtail T\propto \sqrt{m}[/tex]
Hence
[tex]\\ \rm\rightarrowtail \dfrac{T_1}{T_2}=\sqrt{\dfrac{m1}{m2}}[/tex]
[tex]\\ \rm\rightarrowtail \dfrac{1.5}{2}=\sqrt{\dfrac{0.5}{m2}}[/tex]
[tex]\\ \rm\rightarrowtail 0.75^2=\dfrac{0.5}{m2}[/tex]
[tex]\\ \rm\rightarrowtail m_2=\dfrac{0.5}{0.75^2}[/tex]
[tex]\\ \rm\rightarrowtail m_2=0.888888888\dots[/tex]
So
from this
So it's infinite in terms of 8 so must be greter than one 8
We rounded it up for 3 decimals
So
Error range=[1.99,2.01]
Very mere one
Now find percentage
[tex]\\ \rm\rightarrowtail \dfrac{0.02}{2}(100)=0.01(100)=1\%[/tex]
Mass should be lied in
But for increase mass
it would be