Respuesta :
Split the summand into partial fractions,
[tex]\dfrac1{n(2n+1)} = \dfrac1n - \dfrac2{2n+1}[/tex]
At even integers, the Riemann zeta function has the equivalent form
[tex]\zeta(2n) = \dfrac{(-1)^{n+1} B_{2n} 2^{2n-1} \pi^{2n}}{(2n)!}[/tex]
where [tex]B_n[/tex] denotes the n-th Bernoulli number.
Now the sum we want is
[tex]\displaystyle \sum_{n=1}^\infty \frac{\zeta(2n)}{n(2n+1)4^{2n}} = -\frac12 \sum_{n=1}^\infty \frac{(-1)^n B_{2n}}{n (2n)!} \left(\frac{\pi^2}4\right)^n + \sum_{n=1}^\infty \frac{(-1)^n B_{2n}}{(2n+1) (2n)!} \left(\frac{\pi^2}4\right)^n[/tex]
Recall the series expansion for cot(x), valid for 0 < x < π :
[tex]\cot(x) = \displaystyle \sum_{n=0}^\infty \frac{(-1)^n B_{2n} 2^{2n} x^{2n-1}}{(2n)!}[/tex]
from which we have
[tex]x \cot(x) = \displaystyle \sum_{n=0}^\infty \frac{(-1)^n B_{2n}}{(2n)!} \left(4x^2\right)^n[/tex]
and letting [tex]x \to \frac{\sqrt x}2[/tex], we get
[tex]-\dfrac{\sqrt x}2 \cot\left(\dfrac{\sqrt x}2\right) = \displaystyle \sum_{n=0}^\infty \frac{(-1)^{n+1} B_{2n}}{(2n)!} x^n[/tex]
Let
[tex]f(x) = \displaystyle \sum_{n=1}^\infty \frac{(-1)^n B_{2n}}{n (2n)!} x^n[/tex]
Differentiating both sides gives
[tex]f'(x) = \displaystyle \sum_{n=1}^\infty \frac{(-1)^n B_{2n}}{(2n)!} x^{n-1}[/tex]
so that
[tex]x f'(x) = \dfrac{\sqrt x}2 \cot\left(\dfrac{\sqrt x}2\right) - 1[/tex]
By the fundamental theorem of calculus,
[tex]f'(x) = \dfrac1{2\sqrt x} \cot\left(\dfrac{\sqrt x}2\right) - \dfrac1x[/tex]
[tex]\implies f(x) = f(0) + 2 \ln\left(\sin\left(\dfrac{\sqrt x}2\right)\right) - \ln(x)[/tex]
We observe that as x approaches 0, the series vanishes, so we must have
[tex]\displaystyle f(0) = \lim_{x\to0^+} 2\ln\left(\sin\left(\frac{\sqrt x}2\right)\right) - \ln(x) = -2\ln(2)[/tex]
Similarly, let
[tex]g(x) = \displaystyle \sum_{n=1}^\infty \frac{(-1)^n B_{2n}}{(2n+1) (2n)!} x^{2n+1}[/tex]
with g(0) = 0, and differentiate to get
[tex]g'(x) = \displaystyle \sum_{n=1}^\infty \frac{(-1)^n B_{2n}}{(2n)!} (x^2)^n[/tex]
We then have
[tex]g'(x) = \dfrac x2 \cot\left(\dfrac x2\right) - 1[/tex]
and by the fundamental theorem of calculus,
[tex]g(x) = \displaystyle \int_0^x \frac t2 \cot\left(\frac t2\right) \, dt - x[/tex]
or
[tex]\dfrac{g(\sqrt x)}{\sqrt x} = \displaystyle \frac1{\sqrt x} \int_0^{\sqrt x} \frac t2 \cot\left(\frac t2\right) \, dt - 1[/tex]
The sum we want is then
[tex]\displaystyle \sum_{n=1}^\infty \frac{\zeta(2n)}{n(2n+1)4^{2n}} = -\frac12 f\left(\frac{\pi^2}4\right) + \frac1{\sqrt{\frac{\pi^2}4}} g\left(\sqrt{\frac{\pi^2}4}\right) = -\frac12 f\left(\frac{\pi^2}4\right) + \frac2\pi g\left(\frac\pi2\right)[/tex]
Now we turn our attention to
[tex]\displaystyle \int_0^{\frac\pi2} \frac x2 \cot\left(\frac x2\right) \, dx = 2 \int_0^{\frac\pi4} x \cot(x) \, dx[/tex]
Integrating by parts gives
[tex]\displaystyle \int_0^{\frac\pi4} x \cot(x) \, dx = -\frac\pi8 \ln(2) - \int_0^{\frac\pi4} \ln(\sin(x)) \, dx[/tex]
Using the identity from your earlier question [26989784],
[tex]\displaystyle -\int_0^{\frac\pi4} \ln(\sin(x)) \, dx = \frac\pi8 \ln(2) + \frac12 \sum_{k=1}^\infty \frac1{k^2} \sin\left(\frac{k\pi}2\right) \\\\ = \frac\pi8 \ln(2) + \frac12 \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)^2} \\\\ = \frac\pi8 \ln(2) + \frac G2[/tex]
where G is Catalan's constant.
So, it would seem
[tex]\displaystyle \sum_{n=1}^\infty \frac{\zeta(2n)}{n(2n+1)4^{2n}} = \boxed{\ln(\pi) - \ln(2) + \frac{2G}\pi - 1}[/tex]