Review the work showing the first few steps in writing a partial fraction decomposition.

StartFraction 4 x + 40 Over (x + 2) (x + 6) EndFraction = StartFraction A Over x + 2 EndFraction + StartFraction 16 Over x + 6 EndFraction
4x + 40 = A(x + 6) + B(x + 2)
4x + 40 = Ax + 6A + Bx + 2B

What is the partial fraction decomposition in terms of x?

Respuesta :

Answer:

8/(x + 2) - 4/(x + 6)

Step-by-step explanation:

4x + 40 = Ax + 6A + Bx + 2B

Equating coefficients of x

4 = A + B      (1)

Equating constant terms:

40 = 6A + 2B    (2)

Multiply  equation (1) by -2:

-8 = -2A - 2B   .. (3)

Add (2) and (3):

32 = 4A

A = 32/4

A = 8.

4 = 8 + B

B = 4 - 8

B = -4.

The decomposition of the given partial fraction in terms of x is [tex]\frac{4x+40}{(x+2)(x+6)} =\frac{8}{(x+2)}-\frac{4}{(x+6)}[/tex].

What is partial fraction?

The partial fraction is the result of writing a rational expression as the sum of two or more fractions.

According to the given question.

We have a partial fraction

[tex]\frac{4x+40}{(x+2)(x+6)} =\frac{A}{(x+2)} +\frac{B}{(x+6)}[/tex]

We have to decompose the above partial fraction in terms of x.

The above partial fraction can be written as

[tex]\frac{4x+40}{(x+2)(x+6)} =\frac{A(x+6)+B(x+2)}{(x+2)(x+6)}[/tex]

⇒[tex]4x+40 = A(x+6)+B(x+2)[/tex]

⇒[tex]4x + 40 = Ax + 6A + Bx + 2B[/tex]

⇒[tex]4x + 40 = x(A+B) +6A + 2B...(i)[/tex]

On comparing the coefficient of x and the constant terms.

[tex]A+B = 4..(ii)[/tex]

⇒[tex]A = 4 - B[/tex]

and, [tex]6A+2B = 40..(iii)[/tex]

⇒[tex]2(3A+B) = 40[/tex]

Substitute the value of A in (iii)

⇒[tex]2(3A+B) = 40[/tex]

⇒[tex]3A+B = 20[/tex]

⇒[tex]3(4-B)+B = 20[/tex]

⇒[tex]12 - 3B +B = 20[/tex]

⇒[tex]12 - 2B = 20[/tex]

⇒[tex]-2B = 8[/tex]

⇒[tex]B = -4[/tex]

So, [tex]A = 4-(-4) = 8[/tex]

Substitute the value of A and B in the given partial fraction.

⇒[tex]\frac{4x+40}{(x+2)(x+6)} =\frac{8}{(x+2)}-\frac{4}{(x+6)}[/tex]

Hence, the decomposition of the given partial fraction in terms of x is [tex]\frac{4x+40}{(x+2)(x+6)} =\frac{8}{(x+2)}-\frac{4}{(x+6)}[/tex].

Find out the more information about the partial fraction here:

https://brainly.com/question/2273342

#SPJ2

ACCESS MORE
EDU ACCESS