Please Help! Locks in 1 hour! Will give Brainlest!

Answer:
Last option is the correct answer
[tex]\huge{\pink{\boxed{\frac{5\pi}{6},\:\frac{7\pi}{6}}}}[/tex]
Step-by-step explanation:
Formulae to be used:
[tex]\blue{\boxed{\bold{\cos(\pi-\theta)=-\cos\theta}}}\\\red{\boxed{\bold{cos(\pi+\theta)=-\cos\theta}}}[/tex]
Solution:
[tex]Let\: \theta = cos^{-1}\bigg(-\frac{\sqrt 3}{2}\bigg)[/tex]
[tex]\implies\cos \theta = -\frac{\sqrt 3}{2}[/tex]
[tex]\implies\cos \theta =\cos\bigg(\pi-\frac{\pi}{6}\bigg)[/tex]
[tex]\implies\cos \theta =\cos\bigg(\frac{6\pi-\pi}{6}\bigg)[/tex]
[tex]\huge{\red{\boxed{\implies \theta =\frac{5\pi}{6}}}}[/tex]
Further:
[tex]Let\: \theta = cos^{-1}\bigg(-\frac{\sqrt 3}{2}\bigg)[/tex]
[tex]\implies\cos \theta = -\frac{\sqrt 3}{2}[/tex]
[tex]\implies\cos \theta =\cos\bigg(\pi+\frac{\pi}{6}\bigg)[/tex]
[tex]\implies\cos \theta =\cos\bigg(\frac{6\pi+\pi}{6}\bigg)[/tex]
[tex]\huge{\orange{\boxed{\implies \theta =\frac{7\pi}{6}}}}[/tex]
Finally:
[tex]\huge{\purple{\boxed{ \theta =\frac{5\pi}{6},\:\frac{7\pi}{6}}}}[/tex]