Respuesta :

Answer:

Last option is the correct answer

[tex]\huge{\pink{\boxed{\frac{5\pi}{6},\:\frac{7\pi}{6}}}}[/tex]

Step-by-step explanation:

Formulae to be used:

[tex]\blue{\boxed{\bold{\cos(\pi-\theta)=-\cos\theta}}}\\\red{\boxed{\bold{cos(\pi+\theta)=-\cos\theta}}}[/tex]

Solution:

[tex]Let\: \theta = cos^{-1}\bigg(-\frac{\sqrt 3}{2}\bigg)[/tex]

[tex]\implies\cos \theta = -\frac{\sqrt 3}{2}[/tex]

[tex]\implies\cos \theta =\cos\bigg(\pi-\frac{\pi}{6}\bigg)[/tex]

[tex]\implies\cos \theta =\cos\bigg(\frac{6\pi-\pi}{6}\bigg)[/tex]

[tex]\huge{\red{\boxed{\implies \theta =\frac{5\pi}{6}}}}[/tex]

Further:

[tex]Let\: \theta = cos^{-1}\bigg(-\frac{\sqrt 3}{2}\bigg)[/tex]

[tex]\implies\cos \theta = -\frac{\sqrt 3}{2}[/tex]

[tex]\implies\cos \theta =\cos\bigg(\pi+\frac{\pi}{6}\bigg)[/tex]

[tex]\implies\cos \theta =\cos\bigg(\frac{6\pi+\pi}{6}\bigg)[/tex]

[tex]\huge{\orange{\boxed{\implies \theta =\frac{7\pi}{6}}}}[/tex]

Finally:

[tex]\huge{\purple{\boxed{ \theta =\frac{5\pi}{6},\:\frac{7\pi}{6}}}}[/tex]

ACCESS MORE
EDU ACCESS