Respuesta :

Check the picture below, so the circle looks more or less like that one.

well, the center of it is simply the Midpoint of those two points, and its radius is simply half-the-distance between them.

[tex]~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-5}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 3 -5}{2}~~~ ,~~~ \cfrac{ 5 + 9}{2} \right)\implies \left( \cfrac{-2}{2}~~,~~\cfrac{14}{2} \right)\implies \stackrel{center}{(-1~~,~~7)} \\\\[-0.35em] ~\dotfill[/tex]

[tex]~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-5}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[3 - (-5)]^2 + [5 - 9]^2}\implies d=\sqrt{(3+5)^2+(-4)^2} \\\\\\ d=\sqrt{8^2+16}\implies d=\sqrt{80}\implies d=4\sqrt{5}~\hfill \stackrel{\textit{half the diameter}}{\cfrac{4\sqrt{5}}{2}\implies \underset{radius}{2\sqrt{5}}}[/tex]

Ver imagen jdoe0001
RELAXING NOICE
Relax