Answer:
[tex]g(x)=x^3-8x^2+9x+11[/tex]
Step-by-step explanation:
[tex]f(x)=-x^3-8x^2-9x+11[/tex]
When a function is reflected across the y-axis, negative x-values become positive, and positive x-values become negative.
Therefore, substitute -x in place of x in the function f(x):
[tex]g(x)=-(-x)^3-8(-x)^2-9(-x)+11[/tex]
We know that [tex](-x)^3=-(x^3)[/tex]
[tex]\implies -(-x)^3=--(x^3)=x^3[/tex]
We know that [tex](-x)^2=x^2[/tex]
[tex]\implies -8(-x)^2=-8(x)^2=-8x^2[/tex]
Also [tex]-9(-x)=+ \ 9x[/tex]
Therefore,
[tex]g(x)=x^3-8x^2+9x+11[/tex]