Solve for the indicated side. Leave your answer in simplified radical form. (Step by step)

In order to solve this particular question, use the sine rule.
[tex]\sf sin(x)= \dfrac{opposite}{hypotensue}[/tex]
Here given:
Henceforth solve:
[tex]\hookrightarrow \sf sin(60)= \dfrac{6}{x}[/tex]
[tex]\hookrightarrow \sf x= \dfrac{6}{sin(60)}[/tex]
[tex]\hookrightarrow \sf x= 4\sqrt{3}[/tex]
[tex]\\ \rm\rightarrowtail sin60=\dfrac{Perpendicular}{Hypotenuse}[/tex]
[tex]\\ \rm\rightarrowtail sin60=\dfrac{6}{x}[/tex]
[tex]\\ \rm\rightarrowtail \dfrac{\sqrt{3}}{2}=\dfrac{6}{x}[/tex]
[tex]\\ \rm\rightarrowtail \sqrt{3}x=12[/tex]
[tex]\\ \rm\rightarrowtail x=12/\sqrt{3}[/tex]
[tex]\\ \rm\rightarrowtail x=4\sqrt{3}in[/tex]