Respuesta :

In order to solve this particular question, use the sine rule.

[tex]\sf sin(x)= \dfrac{opposite}{hypotensue}[/tex]

Here given:

  • opposite = 6 inch
  • hypotenuse = x
  • angle = 60°

Henceforth solve:

[tex]\hookrightarrow \sf sin(60)= \dfrac{6}{x}[/tex]

[tex]\hookrightarrow \sf x= \dfrac{6}{sin(60)}[/tex]

[tex]\hookrightarrow \sf x= 4\sqrt{3}[/tex]

[tex]\\ \rm\rightarrowtail sin60=\dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]\\ \rm\rightarrowtail sin60=\dfrac{6}{x}[/tex]

[tex]\\ \rm\rightarrowtail \dfrac{\sqrt{3}}{2}=\dfrac{6}{x}[/tex]

[tex]\\ \rm\rightarrowtail \sqrt{3}x=12[/tex]

[tex]\\ \rm\rightarrowtail x=12/\sqrt{3}[/tex]

[tex]\\ \rm\rightarrowtail x=4\sqrt{3}in[/tex]

ACCESS MORE
EDU ACCESS