(a) The initial energy of the mass is 76.485 J.
(b) The compression of the spring in the absence of friction is 21.2 cm.
(c) The compression of the spring in the presence of friction is 19.4 cm.
The initial energy of the mass is determined as follows;
E = K.E + P.E
E = ¹/₂mv² + mgh
where;
E = ¹/₂mv² + mg x Lsinθ
P.E = ¹/₂(9.4)(2.5)² + (9.4)(9.8)(0.87)(sin36)
P.E = 76.485 J
The compression of the spring in the absence of friction is calculated as follows;
Ux = E
¹/₂kx² = 76.485
kx² = 2(76.485)
x² = (2 x 76.485)/k
x = √(2 x 76.485)/k
x = √(2 x 76.485 / 3413.7)
x = 0.212 m
x = 21.2 cm
The compression of the spring in the presence of friction is determined by applying the principle of conservation of energy.
E - Fd = Ux
E - μmgd = ¹/₂kx²
76.11 - (0.27 x 9.4 x 9.8 x 0.48) = ¹/₂(3413)x²
64.17 = 1706.5x²
x² = 0.0376
x = √0.0376
x = 0.194
x = 19.4 cm
Learn more about conservation of energy here: https://brainly.com/question/166559