By third equation of motion -
[tex]\green{ \underline { \boxed{ \sf{v^2-u^2=2aS}}}}[/tex]
where
Putting Values to find final velocity of mass before hitting the ground-
[tex]\begin{gathered}\\\implies\quad \sf v^2-(0)^2=2\times g \times 4 \quad (g = acceleration \: due \:to \: gravity) \\\end{gathered} [/tex]
[tex]\begin{gathered}\\\implies\quad \sf v^2=2\times 9.8 \times 4\quad (g= 9.8 \:m/s) \\\end{gathered} [/tex]
[tex]\begin{gathered}\\\implies\quad \sf v=\sqrt{78.6} \\\end{gathered} [/tex]
[tex]\begin{gathered}\\\implies\quad \sf v= 8.86 \:m/s \\\end{gathered} [/tex]
Now finding the momentum of the mass at that moment -
[tex]\green{ \underline { \boxed{ \sf{Momentum= mass \times velocity}}}}[/tex]
[tex]\begin{gathered}\\\implies\quad \sf Momentum= 21.2 \times 8.86 \\\end{gathered} [/tex]
[tex]\begin{gathered}\\\implies\quad \sf Momentum= 187.8 \:kgms^{-1} \\\end{gathered} [/tex]
[tex]\longrightarrow[/tex]The momentum of the mass just before it hits the ground is 187.8 kgm/s
[tex]\\[/tex]
[tex]\therefore \sf Option \: B) \: is \:correct [/tex]✔️