Respuesta :
Answer:
[tex](x+4)(x+5)[/tex]
Step-by-step explanation:
To factorize [tex]x^2+9x+20[/tex]
[tex]\textsf{for} \ ax^2+bx+c \ \textsf{find} \ v, w \ \textsf{such that} \ v \cdot w=a \cdot c \ \textsf{and} \ v+w=b\\ \textsf{ and group into} \ (ax^2+vx)+(wx+c)[/tex]
[tex]a \cdot c=1 \cdot 20=20[/tex]
[tex]b=9[/tex]
Therefore, the 2 numbers that multiply together to give 20 and add together to give 9 are: 4 and 5
[tex]\implies x^2+4x+5x+20[/tex]
[tex]\implies (x^2+4x)+(5x+20)[/tex]
Factor the parentheses:
[tex]\implies x(x+4)+5(x+4)[/tex]
Factor out the common term [tex](x+4)[/tex]:
[tex]\implies (x+4)(x+5)[/tex]
[tex]\\ \rm\rightarrowtail x^2+9x+20[/tex]
- Use mid term splitation
[tex]\\ \rm\rightarrowtail x^2+4x+5x+20[/tex]
[tex]\\ \rm\rightarrowtail x(x+4)+5(x+4)[/tex]
[tex]\\ \rm\rightarrowtail (x+5)(x+4)[/tex]
Done!